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1 Introduction 

The purpose for the Dutch Labour Force Survey (DLFS) is to publish monthly, quarterly and annual figures about the 
employed and unemployed labour force in the Netherlands.  Monthly publication tables are compiled with a 
multivariate structural time series model (STM), while quarterly and annual figures are predominantly produced with 
the more commonly used generalized regression (GREG) estimator. To enforce consistency between monthly and 
quarterly figures, the weighting scheme for quarterly figures contains a component that is based on the monthly 
labour force estimates. The variance of the GREG estimator ignores the uncertainty of including components in the 
weighting scheme that are observed with measurement error. This interim report describes the first results of a 
project that aims to develop a variance approximation for the GREG estimator that accounts for the additional 
uncertainty that is a result of using weighting components that are observed with error. 

The paper is organized as follows. In Section 2 the DLFS is being described, followed by a presentation of the STM for 
monthly figures in section 3. In Section 4 an analytical expression for the variance of the GREG estimator that 
accounts for uncertainty in the population totals of the weighting scheme is proposed. In Section 4 an outline of the 
research project is described. 

2 Dutch Labour Force Survey 

Before 2000, the DLFS was designed as a cross-sectional survey. Since October 1999, the DLFS has been conducted 
as a rotating panel design. Until the redesign in 2010, data in the first wave were collected by means of computer 
assisted personal interviewing (CAPI). Respondents were re-interviewed four times at quarterly intervals by means 
of computer assisted telephone interviewing (CATI). During these re-interviews, a condensed questionnaire was used 
to establish changes in the labour market position of the respondents.  

In 2010, a major redesign for the DLFS started. The main objective of this redesign was to reduce the administration 
costs of this survey. This is accomplished by changing the data collection in the first wave from CAPI to a mixed data 
collection mode using CAPI and CATI. Households with a listed telephone number are interviewed by telephone, the 
remaining households are interviewed face-to-face. To make CATI data collection in the first wave feasible, the 
questionnaire for the first wave needed to be abridged since a telephone interview, according to data collection 
literature, should not take longer than 15 to 20 minutes. Therefore, parts of the questionnaire were transferred from 
the first to the second or the third wave.  In 2012, a second major redesign of the DLFS took place. Data collection 
changed to a sequential mixed-mode design that starts with Web interviewing. 

The new survey design of the DLFS, that was first implemented in 2021, is different in several ways. The sample 
design changed from a stratified two-stage cluster sample of households to a stratified two-stage cluster sample of 
persons. The target population is people from 15 to 89 years old living in private households. Under the new design, 
samples will be drawn on a weekly instead of a monthly basis. 
 



3 Time series model for monthly estimates 

Since June 2010, Statistics Netherlands uses a multivariate structural time series model (STM) for the production of 
monthly labour force figures. The DLFS is based on a rotating panel design. Each month a new sample enters the 
panel. This sample is observed five times at quarterly intervals. After the fifth interview round, respondents leave 
the panel. The sample observed for the  𝑗𝑗th time is further shortly denoted as the 𝑗𝑗th wave.  As a result of the rotation 
scheme, each month data are collected in five independent samples, i.e. the sample of the first wave that enters the 
panel for the first time, the sample of the second wave that entered the panel three months ago and that is observed 
for the second time, the sample of the third wave that entered the panel six months ago and is observed for the third 
time, etc. Let 𝑦𝑦�𝑡𝑡

[𝑗𝑗] denote the general regression (GREG) estimator (see Särndal et al. (1992)) for an unknown 
population parameter in month 𝑡𝑡, based on the sample that is observed for the  𝑗𝑗th time. As a result, each month, 
five GREG estimates are observed that can be collected in a  five dimensional vector, say  𝒚𝒚�𝑡𝑡 =  (𝑦𝑦�𝑡𝑡

[1], … ,𝑦𝑦�𝑡𝑡
[5])′ . From 

this, a five dimensional time series can be constructed, which is the input of the following STS model:  

𝒚𝒚�𝑡𝑡 = 𝟏𝟏[5]𝜃𝜃𝑡𝑡 + 𝝀𝝀𝑡𝑡 + 𝚫𝚫𝑡𝑡1𝛄𝛄1 + 𝚫𝚫𝑡𝑡2𝛄𝛄2 + 𝚫𝚫𝑡𝑡3𝛄𝛄3 + 𝜹𝜹𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝛾𝛾𝐶𝐶𝐶𝐶𝐶𝐶 + 𝜺𝜺𝑡𝑡.   (1) 

This is an extension of the model proposed by Pfeffermann (1991). The components in STS model (1) can be 
motivated as follows. In the first component 𝜃𝜃𝑡𝑡  denotes  the unknown population parameter and 𝟏𝟏[5] a five 
dimensional column vector with each element equal to one. This component states that 𝒚𝒚�𝑡𝑡  contain five GREG 
estimates for the population parameter in month 𝑡𝑡. The population parameter is modelled with a so-called basic 
STM, i.e. 

𝜃𝜃𝑡𝑡 = 𝐿𝐿𝑡𝑡 + 𝑆𝑆𝑡𝑡 +  𝐼𝐼𝑡𝑡,        (2) 

with 𝐿𝐿𝑡𝑡 a time-varying or dynamic trend model for the low frequency variation in the series of the population 
parameter, 𝑆𝑆𝑡𝑡 a dynamic seasonal model for the monthly effects in the series and 𝐼𝐼𝑡𝑡  a white noise component for 
the unexplained variation of the population parameter. For 𝐿𝐿𝑡𝑡 the so-called smooth trend model and for 𝑆𝑆𝑡𝑡 the 
trigonometric seasonal model  are used, see Durbin and Koopman 2012, Ch. 3 for details. 

The second component in (1), i.e. 𝝀𝝀𝑡𝑡, models the rotation group bias (RGB) induced by the rotating panel design. In 
this application it is assumed that the first wave is free from RGB and thus gives the most reliable estimates for 𝜃𝜃𝑡𝑡 , 
see Van den Brakel and Krieg (2009) for a motivation. The other four components contain random walks, denoted 
𝜆𝜆𝑡𝑡

[𝑗𝑗] (𝑗𝑗 = 2, … , 5), and model the systematic difference between the first wave and the four follow-up waves. The 
third, fourth and fifth component model the discontinuities in the input series that are the result of three major 
survey redesigns that took place in 2010, 2012, and 2021 respectively. The sixth component in (1) contains a 
correction for the loss of CAPI respondents in the first wave during the lockdown of the corona crisis in 2020 and 
2021. See Van den Brakel et al. (2022) for details. 

The last component in (1) is a time series model for the survey errors that accommodate heteroscedasticity due to 
e.g. varying sample sizes over time and serial correlation which is a result of the partial sample overlap of the rotating 
panel design. The sampling errors are stacked in a five dimensional vector 𝜺𝜺𝑡𝑡 = (𝜀𝜀𝑡𝑡

[1], 𝜀𝜀𝑡𝑡
[2], 𝜀𝜀𝑡𝑡

[3],𝜀𝜀𝑡𝑡
[4], 𝜀𝜀𝑡𝑡

[5])′. To account 
for heteroscedasticity, the sampling errors are scaled with the standard errors of the GREG estimates of the input 

series, i.e. 𝜀𝜀𝑡𝑡
[𝑗𝑗] = �𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦�𝑡𝑡

[𝑗𝑗])𝜀𝜀�̃�𝑡
[𝑗𝑗]. The standard errors of the GREG estimates are estimated from the survey data. The 

scaled sampling error for the first wave, i.e. 𝜀𝜀�̃�𝑡
[1], is a normally and independently distributed error term that is not 

correlated with past observations, since the first wave is observed for the first time. The scaled sampling errors of 
the follow-up waves are modeled with an AR(1) model to accommodate serial correlation with past observations. 
See Van den Brakel and Krieg (2015) for details. 

Model (1) can be expressed in the so-called state space representation. Subsequently the Kalman filter is applied to 
obtain optimal estimates for the state variables, see e.g. Durbin and Koopman (2012). The analysis is conducted 



with software developed in OxMetrics in combination with the subroutines of SsfPack 3.0, see Doornik (2009) and 
Koopman et al. (2008). 

Population parameters estimated by the time series model are the unemployed labour force, employed labour 
force and the total labour force. These three parameters are estimated at the national level and a break down in six 
domains that is based on the cross classification of gender and age in three classes. Parameters of interest are the 
trend (𝐿𝐿𝑡𝑡) and the signal. The latter is defined as the trend plus the seasonal component (𝐿𝐿𝑡𝑡 + 𝑆𝑆𝑡𝑡). 

 

4 Analytic approximation of the variance of the GREG estimator under measurement error 

An analytic approximation for the variance of the GREG estimator that accounts for the additional uncertainty of 
incorporating components in the weighting scheme that are subject to measurement error is obtained as follows. 
In a first step the correction term of the regression estimator is split in a term for which the true population totals 
are known, say 𝒕𝒕𝑎𝑎 (where subscript a stands for administration), and a term for which the true population totals are 
estimated, say 𝒕𝒕�𝑚𝑚 (where subscript m stands for model estimate). This results in: 
 

�̂�𝑡𝑦𝑦𝑅𝑅 = �̂�𝑡𝑦𝑦𝜋𝜋 +𝜷𝜷�′(𝒕𝒕𝑥𝑥 − 𝒕𝒕�𝑥𝑥𝜋𝜋) = �̂�𝑡𝑦𝑦𝜋𝜋 + 𝜷𝜷�𝑎𝑎′ (𝒕𝒕𝑎𝑎 − 𝒕𝒕�𝑎𝑎𝜋𝜋) + 𝜷𝜷�𝑚𝑚′ (𝒕𝒕�𝑚𝑚 − 𝒕𝒕�𝑚𝑚𝜋𝜋 ). 
 

Here 𝒕𝒕�𝑎𝑎𝜋𝜋 and 𝒕𝒕�𝑚𝑚𝜋𝜋  are the Horvitz-Thompson/Narain estimators for 𝒕𝒕𝑎𝑎 and 𝒕𝒕�𝑚𝑚 and 𝜷𝜷�𝑎𝑎  and 𝜷𝜷�𝑚𝑚 the corresponding 
estimates for the regression coefficients. With a first order Taylor approximation it follows that: 
 

�̂�𝑡𝑦𝑦𝑅𝑅 ≐ �̂�𝑡𝑦𝑦𝜋𝜋 +𝜷𝜷𝑎𝑎′ (𝒕𝒕𝑎𝑎 − 𝒕𝒕�𝑎𝑎𝜋𝜋) + 𝜷𝜷𝑚𝑚′ (𝒕𝒕�𝑚𝑚 − 𝒕𝒕�𝑚𝑚𝜋𝜋 ) ≡ �̂�𝑡𝑦𝑦𝑅𝑅0. 
 
An expression for the variance of �̂�𝑡𝑦𝑦𝑅𝑅0  must account for two sources of variation; sampling error of the sample 
design of the LFS and the measurement error of the time series model. This is achieved by conditioning on the 
measurement error of the time series models using the following decomposition: 

 
𝑉𝑉𝑣𝑣𝑣𝑣��̂�𝑡𝑦𝑦𝑅𝑅0� =  𝐸𝐸𝑚𝑚𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0�𝑚𝑚� + 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚𝐸𝐸𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0�𝑚𝑚�,    (3) 

 
where 𝐸𝐸𝑚𝑚  and 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚  denote the expectation and variance with respect to the time series model and 𝐸𝐸𝑠𝑠  and 𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠 
the expectation and variance with respect to the sample design. For the first term in (3) it follows that the variance 
of the regression estimator, conditionally on the time series model is equal to the variance of the regression 
estimator treating the population totals obtained with the time series model as fixed known values, i.e.: 
 

𝐸𝐸𝑚𝑚𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0�𝑚𝑚� =  𝐸𝐸𝑚𝑚𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0� = 𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0� . 
 
For the second term in (3) it follows that: 
 

𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚𝐸𝐸𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0�𝑚𝑚� = 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚𝐸𝐸𝑠𝑠��̂�𝑡𝑦𝑦𝜋𝜋 + 𝜷𝜷𝑎𝑎′ (𝒕𝒕𝑎𝑎 − 𝒕𝒕�𝑎𝑎𝜋𝜋) + 𝜷𝜷𝑚𝑚′ (𝒕𝒕�𝑚𝑚 − 𝒕𝒕�𝑚𝑚𝜋𝜋 )�𝑚𝑚�. 
 
Taking the expectation with respect to the sample design implies that 𝐸𝐸𝑠𝑠�̂�𝑡𝑞𝑞𝜋𝜋 = 𝑡𝑡𝑞𝑞, (for 𝑞𝑞 = 𝑦𝑦,𝑣𝑣,𝑚𝑚 ) such that  
 

𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚𝐸𝐸𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0�𝑚𝑚� = 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚(𝑡𝑡𝑦𝑦 + 𝜷𝜷𝑚𝑚′ (𝒕𝒕�𝑚𝑚 − 𝒕𝒕𝑚𝑚)). 
 
In this step it is assumed that 𝒕𝒕�𝑚𝑚 and 𝒕𝒕�𝑚𝑚𝜋𝜋  are uncorrelated. This assumption is not necessarily true since the sample 
data used to construct 𝒕𝒕�𝑚𝑚𝜋𝜋  for a particular quarter, are also used in the time series model to estimate 𝒕𝒕�𝑚𝑚. Since 𝒕𝒕�𝑚𝑚 is 



based on a time series model that uses a long series starting in 2000, it is conjectured that this correlation is 
negligible. Since 𝑡𝑡𝑦𝑦 and 𝒕𝒕𝑚𝑚 are constant with respect to the time series model it follows that  
 

𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚𝐸𝐸𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0�𝑚𝑚� = 𝜷𝜷𝑚𝑚′ 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚(𝒕𝒕�𝑚𝑚)𝜷𝜷𝑚𝑚,     (4) 
 
with 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚(𝒕𝒕�𝑚𝑚) a diagonal matrix containing the variances of the time series model estimates on the diagonal, 
which are available from the software used to produce the monthly labour force figures.  As a result we have the 
following variance approximation for the GREG estimator   
 

𝑉𝑉𝑣𝑣𝑣𝑣��̂�𝑡𝑦𝑦𝑅𝑅0� = 𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0� + 𝜷𝜷𝑚𝑚′ 𝑉𝑉𝑣𝑣𝑣𝑣𝑚𝑚(𝒕𝒕�𝑚𝑚)𝜷𝜷𝑚𝑚,     (5) 
 
with 𝑉𝑉𝑣𝑣𝑣𝑣𝑠𝑠��̂�𝑡𝑦𝑦𝑅𝑅0� being the variance of the regression estimator assuming fixed population totals.  
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